
Bifurcation, uniqueness and multiplicity results for classes of reaction diffusion equations arising in ecology with nonlinear boundary conditions
Author(s) -
Mohan Mallick,
Sarath Sasi,
R. Shivaji,
S. Sundar
Publication year - 2022
Publication title -
communications on pure and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021195
Subject(s) - omega , combinatorics , mathematics , physics , quantum mechanics
We study the structure of positive solutions to steady state ecological models of the form:\begin{document}$ \begin{array}{l} \left\{ \begin{split} -\Delta u& = \lambda uf(u)\; \; && {\rm{in}}\; \; \Omega,\\ \alpha(u)&\frac{\partial u}{\partial \eta}+[1-\alpha(u)]u = 0 &&\;\;\;{\rm{on}}\; \; \partial\Omega, \end{split} \right. \end{array} $\end{document}where \begin{document}$ \Omega $\end{document} is a bounded domain in \begin{document}$ \mathbb{R}^n; $\end{document}\begin{document}$ n>1 $\end{document} with smooth boundary \begin{document}$ \partial\Omega $\end{document} or \begin{document}$ \Omega = (0,1) $\end{document} , \begin{document}$ \frac{\partial}{\partial\eta} $\end{document} represents the outward normal derivative on the boundary, \begin{document}$ \lambda $\end{document} is a positive parameter, \begin{document}$ f:[0,\infty)\to \mathbb{R} $\end{document} is a \begin{document}$ C^2 $\end{document} function such that \begin{document}$ \tfrac{f(s)}{k-s}>0 $\end{document} for some \begin{document}$ k>0 $\end{document} , and \begin{document}$ \alpha:[0,k]\to[0,1] $\end{document} is also a \begin{document}$ C^2 $\end{document} function. Here \begin{document}$ f(u) $\end{document} represents the per capita growth rate, \begin{document}$ \alpha(u) $\end{document} represents the fraction of the population that stays on the patch upon reaching the boundary, and \begin{document}$ \lambda $\end{document} relates to the patch size and the diffusion rate. In particular, we will discuss models in which the per capita growth rate is increasing for small \begin{document}$ u $\end{document} , and models where grazing is involved. We will focus on the cases when \begin{document}$ \alpha'(s)\geq 0 $\end{document} ; \begin{document}$ [0,k] $\end{document} , which represents negative density dependent dispersal on the boundary. We employ the method of sub-super solutions, bifurcation theory, and stability analysis to obtain our results. We provide detailed bifurcation diagrams via a quadrature method for the case \begin{document}$ \Omega = (0,1) $\end{document} .