z-logo
open-access-imgOpen Access
Synchronized and ground-state solutions to a coupled Schrödinger system
Author(s) -
Mohammad Ali Husaini,
Chuangye Liu
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021192
Subject(s) - combinatorics , mathematics , omega , bounded function , arithmetic , physics , mathematical analysis , quantum mechanics
In this paper, we study the following coupled nonlinear Schrödinger system of the form\begin{document}$ \left\{\begin{array}{l} -\Delta u_i-\kappa_iu_i = g_i(u_i)+\lambda\partial_iF(\vec{u}), \\ \vec{u} = (u_1,u_2,\cdots,u_m), u_i\in D_0^{1,2}(\Omega), \end{array}\right. $\end{document}for \begin{document}$ m = 2,3 $\end{document} , where \begin{document}$ \Omega\subset \mathbb{R}^N $\end{document} is a bounded domain or \begin{document}$ \mathbb{R}^N $\end{document} , \begin{document}$ N\geq 3 $\end{document} , \begin{document}$ F(t_1,t_2\cdots,t_m)\in C^1(\mathbb{R}^m,\mathbb{R}) $\end{document} , \begin{document}$ \kappa_i\in\mathbb{R} $\end{document} , \begin{document}$ g_i\in C(\mathbb{R}) \ (i = 1,2,\cdots,m) $\end{document} and \begin{document}$ \lambda>0 $\end{document} is large enough. In this work we mainly focus on the existence of fully nontrivial ground-state solutions and synchronized ground-state solutions under certain conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom