Synchronized and ground-state solutions to a coupled Schrödinger system
Author(s) -
Mohammad Ali Husaini,
Chuangye Liu
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021192
Subject(s) - combinatorics , mathematics , omega , bounded function , arithmetic , physics , mathematical analysis , quantum mechanics
In this paper, we study the following coupled nonlinear Schrödinger system of the form\begin{document}$ \left\{\begin{array}{l} -\Delta u_i-\kappa_iu_i = g_i(u_i)+\lambda\partial_iF(\vec{u}), \\ \vec{u} = (u_1,u_2,\cdots,u_m), u_i\in D_0^{1,2}(\Omega), \end{array}\right. $\end{document}for \begin{document}$ m = 2,3 $\end{document} , where \begin{document}$ \Omega\subset \mathbb{R}^N $\end{document} is a bounded domain or \begin{document}$ \mathbb{R}^N $\end{document} , \begin{document}$ N\geq 3 $\end{document} , \begin{document}$ F(t_1,t_2\cdots,t_m)\in C^1(\mathbb{R}^m,\mathbb{R}) $\end{document} , \begin{document}$ \kappa_i\in\mathbb{R} $\end{document} , \begin{document}$ g_i\in C(\mathbb{R}) \ (i = 1,2,\cdots,m) $\end{document} and \begin{document}$ \lambda>0 $\end{document} is large enough. In this work we mainly focus on the existence of fully nontrivial ground-state solutions and synchronized ground-state solutions under certain conditions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom