Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $ \mathbb{R}^3 $ nonlinear KGS system
Author(s) -
Salah Missaoui
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021189
Subject(s) - attractor , klein–gordon equation , schrödinger's cat , domain (mathematical analysis) , physics , mathematical physics , nonlinear system , mathematics , combinatorics , mathematical analysis , quantum mechanics
The main goal of this paper is to study the asymptotic behavior of a coupled Klein-Gordon-Schrödinger system in three dimensional unbounded domain. We prove the existence of a global attractor of the systems of the nonlinear Klein-Gordon-Schrödinger (KGS) equations in \begin{document}$ H^1({\mathbb R}^3)\times H^1({\mathbb R}^3)\times L^2({\mathbb R}^3) $\end{document} and more particularly that this attractor is in fact a compact set of \begin{document}$ H^2({\mathbb R}^3)\times H^2({\mathbb R}^3)\times H^1({\mathbb R}^3) $\end{document} .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom