z-logo
open-access-imgOpen Access
Liouville type theorems for stable solutions of elliptic system involving the Grushin operator
Author(s) -
Foued Mtiri
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021187
Subject(s) - combinatorics , mathematics , type (biology) , arithmetic , ecology , biology
We examine the following degenerate elliptic system:\begin{document}$ -\Delta_{s} u \! = \! v^p, \quad -\Delta_{s} v\! = \! u^\theta, \;\; u, v>0 \;\;\mbox{in }\; \mathbb{R}^N = \mathbb{R}^{N_1}\times \mathbb{R}^{N_2}, \quad\mbox{where}\;\; s \geq 0\;\; \mbox{and} \;\;p, \theta \!>\!0. $\end{document}We prove that the system has no stable solution provided \begin{document}$ p, \theta >0 $\end{document} and \begin{document}$ N_s: = N_1+(1+s)N_2< 2 + \alpha + \beta, $\end{document} where\begin{document}$ \alpha = \frac{2(p+1)}{p\theta - 1} \quad\mbox{and} \quad \beta = \frac{2(\theta +1)}{p\theta - 1}. $\end{document}This result is an extension of some results in [ 15 ]. In particular, we establish a new integral estimate for \begin{document}$ u $\end{document} and \begin{document}$ v $\end{document} (see Proposition 1.1), which is crucial to deal with the case \begin{document}$ 0 < p < 1. $\end{document}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom