Singular solutions of a Hénon equation involving a nonlinear gradient term
Author(s) -
Craig Cowan,
A. Razani
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021172
Subject(s) - term (time) , nonlinear system , mathematics , mathematical analysis , physics , quantum mechanics
Here, we consider positive singular solutions of\begin{document}$ \begin{equation*} \left\{ \begin{array}{lcc} -\Delta u = |x|^\alpha |\nabla u|^p & \text{in}& \Omega \backslash\{0\},\\ u = 0&\text{on}& \partial \Omega, \end{array} \right. \end{equation*} $\end{document}where \begin{document}$ \Omega $\end{document} is a small smooth perturbation of the unit ball in \begin{document}$ \mathbb{R}^N $\end{document} and \begin{document}$ \alpha $\end{document} and \begin{document}$ p $\end{document} are parameters in a certain range. Using an explicit solution on \begin{document}$ B_1 $\end{document} and a linearization argument, we obtain positive singular solutions on perturbations of the unit ball.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom