z-logo
open-access-imgOpen Access
Regularity and existence of positive solutions for a fractional system
Author(s) -
Ran Zhuo,
Yan Li
Publication year - 2021
Publication title -
communications on pure and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021168
Subject(s) - combinatorics , omega , bounded function , mathematics , physics , mathematical analysis , quantum mechanics
We consider the nonlinear fractional elliptic system\begin{document}$ \begin{equation*} \left\{\begin{array}{ll} (- \Delta)^{\frac{\alpha_1}{2}}u(x) = f(x, u, v), & \text{in}\, \, \, \Omega, \\ (- \Delta)^{\frac{\alpha_2}{2}}v(x) = g(x, u, v), & \text{in}\, \, \, \Omega, \\ u = v = 0, & \text{in}\, \, \, \mathbb{R}^n\setminus\Omega, \end{array} \right. \label{a-1.2} \end{equation*} $\end{document}where \begin{document}$ 0<\alpha_1, \alpha_2<2 $\end{document} and \begin{document}$ \Omega $\end{document} is a bounded domain with \begin{document}$ C^2 $\end{document} boundary in \begin{document}$ \mathbb{R}^n $\end{document} . To overcome the technical difficulty due to the different fractional orders, we employ two distinct methods and derive the a priori estimates for \begin{document}$ 0<\alpha_1, \alpha_2<1 $\end{document} and \begin{document}$ 1<\alpha_1, \alpha_2 <2 $\end{document} respectively. Moreover, combining the a priori estimate with the topological degree theory, we prove the existence of positive solutions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here