Local well-posedness for the Zakharov system in dimension $ d = 2, 3 $
Author(s) -
Zijun Chen,
Shengkun Wu
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021161
Subject(s) - dimension (graph theory) , mathematics , combinatorics , space (punctuation) , arithmetic , computer science , operating system
The Zakharov system in dimension \begin{document}$ d = 2,3 $\end{document} is shown to have a local unique solution for any initial values in the space \begin{document}$ H^{s} \times H^{l} \times H^{l-1} $\end{document} , where a new range of regularity \begin{document}$ (s, l) $\end{document} is given, especially at the line \begin{document}$ s-l = -1 $\end{document} . The result is obtained mainly by the normal form reduction and the Strichartz estimates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom