z-logo
open-access-imgOpen Access
Partial regularity result for non-autonomous elliptic systems with general growth
Author(s) -
Teresa Isernia,
Chiara Leone,
Anna Verde
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021160
Subject(s) - combinatorics , mathematics , omega , arithmetic , physics , quantum mechanics
In this paper we prove a partial Hölder regularity result for weak solutions \begin{document}$ u:\Omega\to \mathbb{R}^N $\end{document} , \begin{document}$ N\geq 2 $\end{document} , to non-autonomous elliptic systems with general growth of the type:\begin{document}$ \begin{equation*} -{\rm{div}} a(x, u, Du) = b(x, u, Du) \quad \;{\rm{ in }}\; \Omega. \end{equation*} $\end{document}The crucial point is that the operator \begin{document}$ a $\end{document} satisfies very weak regularity properties and a general growth, while the inhomogeneity \begin{document}$ b $\end{document} has a controllable growth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom