Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs
Author(s) -
Masataka Shibata
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021147
Subject(s) - mathematics , combinatorics , multiplicity (mathematics) , discrete mathematics , geometry
We consider positive solutions of semi-linear elliptic equations\begin{document}$ - \epsilon^2 u'' +u = u^p $\end{document}on compact metric graphs, where \begin{document}$ p \in (1,\infty) $\end{document} is a given constant and \begin{document}$ \epsilon $\end{document} is a positive parameter. We focus on the multiplicity of positive solutions for sufficiently small \begin{document}$ \epsilon $\end{document} . For each edge of the graph, we construct a positive solution which concentrates some point on the edge if \begin{document}$ \epsilon $\end{document} is sufficiently small. Moreover, we give the existence result of solutions which concentrate inner vertices of the graph.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom