z-logo
open-access-imgOpen Access
Bounds for subcritical best Sobolev constants in <i>W</i><sup>1, <i>p</i></sup>
Author(s) -
Lele Du
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021135
Subject(s) - limiting , omega , combinatorics , sobolev space , mathematics , bounded function , physics , mathematical analysis , quantum mechanics , mechanical engineering , engineering
This paper aims at establishing fine bounds for subcritical best Sobolev constants of the embeddings\begin{document}$ W_{0}^{1,p}(\Omega)\hookrightarrow L^{q}(\Omega),\quad 1\leq q&lt; \begin{cases} \frac{Np}{N-p},&amp; 1\leq p&lt;N\\ \infty,&amp; p = N \end{cases} $\end{document}where \begin{document}$ N\geq p\geq1 $\end{document} and \begin{document}$ \Omega $\end{document} is a bounded smooth domain in \begin{document}$ \mathbb{R}^{N} $\end{document} or the whole space. The Sobolev limiting case \begin{document}$ p = N $\end{document} is also covered by means of a limiting procedure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom