z-logo
open-access-imgOpen Access
Existence and multiplicity for Hamilton-Jacobi-Bellman equation
Author(s) -
Bianxia Yang,
Shanshan Gu,
Guowei Dai
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021130
Subject(s) - combinatorics , omega , mathematics , bounded function , physics , mathematical analysis , quantum mechanics
This paper is concerned with the existence and multiplicity of constant sign solutions for the following fully nonlinear equation\begin{document}$ \begin{equation*} \left\{ \begin{array}{l} -\mathcal{M}_\mathcal{C}^{\pm}(D^2u) = \mu f(u) \ \ \ \ \text{in} \ \ \Omega,\\ u = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{on}\ \partial\Omega, \end{array} \right. \end{equation*} $\end{document}where \begin{document}$ \Omega\subset\mathbb{R}^N $\end{document} is a bounded regular domain with \begin{document}$ N\geq3 $\end{document} , \begin{document}$ \mathcal{M}_\mathcal{C}^{\pm} $\end{document} are general Hamilton-Jacobi-Bellman operators, \begin{document}$ \mu $\end{document} is a real parameter. By using bifurcation theory, we determine the range of parameter \begin{document}$ \mu $\end{document} of the above problem which has one or multiple constant sign solutions according to the behaviors of \begin{document}$ f $\end{document} at \begin{document}$ 0 $\end{document} and \begin{document}$ \infty $\end{document} , and whether \begin{document}$ f $\end{document} satisfies the signum condition \begin{document}$ f(s)s>0 $\end{document} for \begin{document}$ s\neq0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom