z-logo
open-access-imgOpen Access
Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term
Author(s) -
Ahmed Bonfoh,
Ibrahim A. Suleman
Publication year - 2021
Publication title -
communications on pure and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021125
Subject(s) - combinatorics , mathematics , order (exchange) , arithmetic , economics , finance
We consider the conserved phase-field system\begin{document}$\left\{ \begin{array}{l}\tau {\phi _t} + N(\delta {\phi _t} + N\phi + g(\phi ) - u) = 0,\\\epsilon{u_t} + {\phi _t} + Nu = 0,\end{array} \right.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{S}}_\varepsilon }} \right)$\end{document}where \begin{document}$ \tau>0 $\end{document} is a relaxation time, \begin{document}$ \delta>0 $\end{document} is the viscosity parameter, \begin{document}$ \epsilon\in (0,1] $\end{document} is the heat capacity, \begin{document}$ \phi $\end{document} is the order parameter, \begin{document}$ u $\end{document} is the absolute temperature, the Laplace operator \begin{document}$ N = -\Delta:{\mathscr D}(N)\to \dot L^2(\Omega) $\end{document} is subject to either Neumann boundary conditions (in which case \begin{document}$ \Omega\subset{\mathbb R}^d $\end{document} is a bounded domain with smooth boundary) or periodic boundary conditions (in which case \begin{document}$ \Omega = \Pi_{i = 1}^d(0,L_i), $\end{document}\begin{document}$ L_i>0 $\end{document} ), \begin{document}$ d = 1,2 $\end{document} or 3, and \begin{document}$ G(\phi) = \int_0^\phi g(\sigma)d\sigma $\end{document} is a double-well potential. Let \begin{document}$ j = 1 $\end{document} when \begin{document}$ d = 1 $\end{document} and \begin{document}$ j = 2 $\end{document} when \begin{document}$ d = 2 $\end{document} or 3. We assume that \begin{document}$ g\in{\mathcal C}^{j+1}(\mathbb R) $\end{document} and satisfies the conditions \begin{document}$ g'(\phi)\geq -{\mathscr C}_1 $\end{document} , \begin{document}$ G(\phi)\ge -{\mathscr C}_2 $\end{document} and \begin{document}$ (\phi-m(\phi))g(\phi)-{\mathscr C}_3(m(\phi))G(s)\ge -{\mathscr C}_4(m(\phi)) $\end{document} ( \begin{document}$ {\mathscr C}_5(\varrho)\le {\mathscr C}_l(m(\phi))\le {\mathscr C}_6(\varrho) $\end{document} , \begin{document}$ l = 3,4 $\end{document} , whenever \begin{document}$ |m(\phi)|\le \varrho $\end{document} ), where \begin{document}$ \varrho,{\mathscr C}_1, {\mathscr C}_2,{\mathscr C}_4\ge 0 $\end{document} , \begin{document}$ {\mathscr C}_3, {\mathscr C}_5,{\mathscr C}_6>0 $\end{document} and \begin{document}$ m(\phi) = \frac{1}{|\Omega|}\int_\Omega\phi(x)dx $\end{document} . For instance, \begin{document}$ g(\phi) = \sum_{k = 1}^{2p-1}a_k\phi^k, $\end{document}\begin{document}$ p\in{\mathbb N}, $\end{document}\begin{document}$ p\ge 2, $\end{document}\begin{document}$ a_{2p-1}>0, $\end{document} satisfies all the above-mentioned conditions. We then prove a well-posedness result, the existence of the global attractor and a family of exponential attractors in the phase space \begin{document}$ {\mathcal V}_j = {\mathscr D}(N^{j/2})\times{\mathscr D}(N^{j/2}) $\end{document} equipped with the norm \begin{document}$ \|(\psi,\varphi)\|_{{\mathcal V}_{j}} = (\|N^{j/2}\psi\|^2+m(\psi)^2+\|N^{j/2}\varphi\|^2+m(\varphi)^2)^{1/2} $\end{document} . Moreover, we demonstrate that the global attractor is upper semicontinuous at \begin{document}$ \epsilon = 0 $\end{document} in the metric induced by the norm \begin{document}$ \|.\|_{{\mathcal V}_{j+1}} $\end{document} . In addition, the exponential attractors are proven to be Hölder continuous at \begin{document}$ \epsilon = 0 $\end{document} in the metric induced by the norm \begin{document}$ \|.\|_{{\mathcal V}_{j}} $\end{document} . Our results improve a recent work by Bonfoh and Enyi [Comm. Pure Appl. Anal. 2016; 35:1077-1105] where the following additional growth condition \begin{document}$ |g''(\phi)|\leq {\mathscr C}_7\left(|\phi|^{p}+1\right), $\end{document}\begin{document}$ {\mathscr C}_7>0 $\end{document} , \begin{document}$ p>0 $\end{document} is arbitrary when \begin{document}$ d = 1, 2 $\end{document} and \begin{document}$ p\in [0,3] $\end{document} when \begin{document}$ d = 3 $\end{document} , was required, preventing \begin{document}$ g $\end{document} to be a polynomial of any arbitrary odd degree with a strictly positive leading coefficient in three space dimension.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here