Classification of non-topological solutions of an elliptic equation arising from self-dual gauged Sigma model
Author(s) -
Huyuan Chen,
Hichem Hajaiej
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021109
Subject(s) - combinatorics , mathematics , arithmetic , physics
Our purpose in this paper is to classify the non-topological solutions of equations\begin{document}$ -\Delta u +\frac{4e^u}{1+e^u} = 4\pi\sum\limits_{i = 1}^k n_i\delta_{p_i}-4\pi\sum^l\limits_{j = 1}m_j\delta_{q_j} \quad{\rm in}\;\; \mathbb{R}^2,\;\;\;\;\;\;(E) $\end{document}where \begin{document}$ \{\delta_{p_i}\}_{i = 1}^k $\end{document} (resp. \begin{document}$ \{\delta_{q_j}\}_{j = 1}^l $\end{document} ) are Dirac masses concentrated at the points \begin{document}$ \{p_i\}_{i = 1}^k $\end{document} , (resp. \begin{document}$ \{q_j\}_{j = 1}^l $\end{document} ), \begin{document}$ n_i $\end{document} and \begin{document}$ m_j $\end{document} are positive integers. Denote \begin{document}$ N = \sum^k_{i = 1}n_i $\end{document} and \begin{document}$ M = \sum^l_{j = 1}m_j $\end{document} satisfying that \begin{document}$ N-M>1 $\end{document} . Problem \begin{document}$ (E) $\end{document} arises from gauged sigma models and we first construct an extremal non-topological solution \begin{document}$ u $\end{document} of \begin{document}$ (E) $\end{document} with asymptotic behavior\begin{document}$ u(x) = -2\ln |x|-2\ln\ln|x|+O(1)\quad{\rm as}\quad |x|\to+\infty $\end{document}and with total magnetic flux \begin{document}$ 4\pi (N-M-1) $\end{document} . And then we do the classification for non-topological solutions of \begin{document}$ (E) $\end{document} with finite magnetic flux. This solves a challenging long standing problem. We believe that our approach is novel and applies to other types of equations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom