The Cauchy-Kovalevskaya extension theorem in discrete Clifford analysis
Author(s) -
Hilde De Ridder,
Hennie De Schepper,
Frank Sommen
Publication year - 2011
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2011.10.1097
Subject(s) - clifford analysis , cauchy distribution , mathematics , extension (predicate logic) , dirac operator , pure mathematics , discrete space , cauchy's integral formula , operator (biology) , mathematical analysis , cauchy problem , initial value problem , computer science , biochemistry , chemistry , repressor , transcription factor , gene , programming language
Discrete Clifford analysis is a higher dimensional discrete function theory based on skew Weyl relations. It is centered around the study of Clifford algebra valued null solutions, called discrete monogenic functions, of a discrete Dirac operator, i.e. a first order, Clifford vector valued difference operator. In this paper, we establish a Cauchy-Kovalevskaya extension theorem for discrete monogenic functions defined on the standard Z(m) grid. Based on this extension principle, discrete Fueter polynomials, forming a basis of the space of discrete spherical monogenics, i.e. homogeneous discrete monogenic polynomials, are introduced. As an illustrative example we moreover explicitly construct the Cauchy-Kovalevskaya extension of the discrete delta function. These results are then generalized for a grid with variable mesh width h
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom