z-logo
open-access-imgOpen Access
The Cauchy-Kovalevskaya extension theorem in discrete Clifford analysis
Author(s) -
Hilde De Ridder,
Hennie De Schepper,
Frank Sommen
Publication year - 2011
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2011.10.1097
Subject(s) - clifford analysis , cauchy distribution , mathematics , extension (predicate logic) , dirac operator , pure mathematics , discrete space , cauchy's integral formula , operator (biology) , mathematical analysis , cauchy problem , initial value problem , computer science , biochemistry , chemistry , repressor , transcription factor , gene , programming language
Discrete Clifford analysis is a higher dimensional discrete function theory based on skew Weyl relations. It is centered around the study of Clifford algebra valued null solutions, called discrete monogenic functions, of a discrete Dirac operator, i.e. a first order, Clifford vector valued difference operator. In this paper, we establish a Cauchy-Kovalevskaya extension theorem for discrete monogenic functions defined on the standard Z(m) grid. Based on this extension principle, discrete Fueter polynomials, forming a basis of the space of discrete spherical monogenics, i.e. homogeneous discrete monogenic polynomials, are introduced. As an illustrative example we moreover explicitly construct the Cauchy-Kovalevskaya extension of the discrete delta function. These results are then generalized for a grid with variable mesh width h

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom