On the decay in time of solutions of some generalized regularized long waves equations
Author(s) -
Youcef Mammeri
Publication year - 2008
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2008.7.513
Subject(s) - mathematical physics , order (exchange) , zero (linguistics) , dispersive partial differential equation , physics , mathematical analysis , wave equation , nonlinear system , mathematics , partial differential equation , quantum mechanics , linguistics , philosophy , finance , economics
International audienceWe consider the generalized Benjamin-Ono equation, regularized in the same manner that the Benjamin-Bona-Mahony equation is found from the Korteweg-de Vries equation \cite{bbm}, namely the equation $u_t + u_x +u^\rho u_x + H(u_{xt})=0,$ where $H$ is the Hilbert transform. In a second time, we consider the generalized Kadomtsev-Petviashvili-II equation, also regularized, namely the equation $u_t + u_x +u^\rho u_x - u_{xxt} +\partial_x^{-1}u_{yy} =0$. We are interested in dispersive properties of these equations for small initial data. We will show that, if the power $\rho$ of the nonlinearity is higher than $3$, the respective solution of these equations tends to zero when time rises with a decay rate of order close to $\frac{1}{2}$
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom