On $ \mathbb{Z}_4\mathbb{Z}_4[u^3] $-additive constacyclic codes
Author(s) -
Om Prakash,
Shikha Yadav,
Habibul Islam,
Patrick Solé
Publication year - 2022
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2022017
Subject(s) - modulo , mathematics , lambda , combinatorics , generator (circuit theory) , ring (chemistry) , discrete mathematics , physics , power (physics) , quantum mechanics , chemistry , organic chemistry , optics
Let \begin{document}$ \mathbb{Z}_4 $\end{document} be the ring of integers modulo \begin{document}$ 4 $\end{document} . This paper studies mixed alphabets \begin{document}$ \mathbb{Z}_4\mathbb{Z}_4[u^3] $\end{document} -additive cyclic and \begin{document}$ \lambda $\end{document} -constacyclic codes for units \begin{document}$ \lambda = 1+2u^2,3+2u^2 $\end{document} . First, we obtain the generator polynomials and minimal generating set of additive cyclic codes. Then we extend our study to determine the structure of additive constacyclic codes. Further, we define some Gray maps and obtain \begin{document}$ \mathbb{Z}_4 $\end{document} -images of such codes. Finally, we present numerical examples that include six new and two best-known quaternary linear codes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom