Open Access
On the polycyclic codes over $ \mathbb{F}_q+u\mathbb{F}_q $
Author(s) -
Wei Qi
Publication year - 2024
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2022015
Subject(s) - mathematics , annihilator , combinatorics , arithmetic , algebra over a field , pure mathematics
In this article, we mainly study the polycyclic codes over \begin{document}$ S $\end{document} , where \begin{document}$ S = \mathbb{F}_q+u\mathbb{F}_q $\end{document} with \begin{document}$ u^2 = u $\end{document} . First, the annihilator self-dual codes, annihilator self-orthogonal codes and annihilator \begin{document}$ {{{\rm{LCD}}}} $\end{document} codes over \begin{document}$ S $\end{document} are also introduced and studied. Next, we define a Gray map from \begin{document}$ S^n $\end{document} to \begin{document}$ \mathbb{F}^{2n}_q $\end{document} and investigate the structure properties of polycyclic codes over \begin{document}$ S $\end{document} using the decomposition method. The Hamming distances of the Gray images are also determined by their decompositions. Finally, we obtain some good codes based on the results.