
On the polycyclic codes over $ \mathbb{F}_q+u\mathbb{F}_q $
Author(s) -
Qi Wei
Publication year - 2022
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2022015
Subject(s) - mathematics , annihilator , combinatorics , arithmetic , algebra over a field , pure mathematics
In this article, we mainly study the polycyclic codes over \begin{document}$ S $\end{document} , where \begin{document}$ S = \mathbb{F}_q+u\mathbb{F}_q $\end{document} with \begin{document}$ u^2 = u $\end{document} . First, the annihilator self-dual codes, annihilator self-orthogonal codes and annihilator \begin{document}$ {{{\rm{LCD}}}} $\end{document} codes over \begin{document}$ S $\end{document} are also introduced and studied. Next, we define a Gray map from \begin{document}$ S^n $\end{document} to \begin{document}$ \mathbb{F}^{2n}_q $\end{document} and investigate the structure properties of polycyclic codes over \begin{document}$ S $\end{document} using the decomposition method. The Hamming distances of the Gray images are also determined by their decompositions. Finally, we obtain some good codes based on the results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom