z-logo
open-access-imgOpen Access
Balanced ($\mathbb{Z} _{2u}\times \mathbb{Z}_{38v}$, {3, 4, 5}, 1) difference packings and related codes
Author(s) -
Hengming Zhao,
Rongcun Qin,
Dianhua Wu
Publication year - 2022
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2022008
Subject(s) - mathematics , combinatorics , discrete mathematics
Let \begin{document}$ m $\end{document} , \begin{document}$ n $\end{document} be positive integers, and \begin{document}$ K $\end{document} a set of positive integers with size greater than 2. An \begin{document}$ (m,n,K,1) $\end{document} optical orthogonal signature pattern code, \begin{document}$ (m,n,K,1) $\end{document} -OOSPC, was introduced by Kwong and Yang for 2-D image transmission in multicore-fiber optical code-division multiple-access (OCDMA) networks with multiple quality of services (QoS) requirement. Let \begin{document}$ G $\end{document} be an additive group, a balanced \begin{document}$ (G, K, 1) $\end{document} difference packing, \begin{document}$ (G, K, 1) $\end{document} -BDP, can be used to construct a balanced \begin{document}$ (m,n,K,1) $\end{document} -OOSPC when \begin{document}$ G = {\mathbb{Z}}_m\times {\mathbb{Z}}_n $\end{document} . In this paper, the existences of optimal \begin{document}$ ( {\mathbb{Z}}_{2u}\times {\mathbb{Z}}_{38v}, \{3,4,5\},1) $\end{document} -BDPs are completely solved with \begin{document}$ u, \ v\equiv 1\pmod2 $\end{document} , and the corresponding optimal balanced \begin{document}$ (2u, 38v,\{3,4,5\},1) $\end{document} -OOSPCs are also obtained.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom