z-logo
open-access-imgOpen Access
Computing square roots faster than the Tonelli-Shanks/Bernstein algorithm
Author(s) -
Palash Sarkar
Publication year - 2022
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2022007
Subject(s) - mathematics , combinatorics , algebra over a field , discrete mathematics , arithmetic , pure mathematics
Let \begin{document}$ p $\end{document} be a prime such that \begin{document}$ p = 1+2^nm $\end{document} , where \begin{document}$ n\geq 1 $\end{document} and \begin{document}$ m $\end{document} is odd. Given a square \begin{document}$ u $\end{document} in \begin{document}$ \mathbb{Z}_p $\end{document} and a non-square \begin{document}$ z $\end{document} in \begin{document}$ \mathbb{Z}_p $\end{document} , we describe an algorithm to compute a square root of \begin{document}$ u $\end{document} which requires \begin{document}$ \mathfrak{T}+O(n^{3/2}) $\end{document} operations (i.e., squarings and multiplications), where \begin{document}$ \mathfrak{T} $\end{document} is the number of operations required to exponentiate an element of \begin{document}$ \mathbb{Z}_p $\end{document} to the power \begin{document}$ (m-1)/2 $\end{document} . This improves upon the Tonelli-Shanks (TS) algorithm which requires \begin{document}$ \mathfrak{T}+O(n^{2}) $\end{document} operations. Bernstein had proposed a table look-up based variant of the TS algorithm which requires \begin{document}$ \mathfrak{T}+O((n/w)^{2}) $\end{document} operations and \begin{document}$ O(2^wn/w) $\end{document} storage, where \begin{document}$ w $\end{document} is a parameter. A table look-up variant of the new algorithm requires \begin{document}$ \mathfrak{T}+O((n/w)^{3/2}) $\end{document} operations and the same storage. In concrete terms, the new algorithm is shown to require significantly fewer operations for particular values of \begin{document}$ n $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom