Two classes of cyclic extended double-error-correcting Goppa codes
Author(s) -
Yanyan Gao,
Qin Yue,
Xinmei Huang,
Yun Yang
Publication year - 2022
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2022003
Subject(s) - mathematics , combinatorics , polynomial , discrete mathematics , algebra over a field , pure mathematics , mathematical analysis
Let \begin{document}$ \Bbb F_{2^m} $\end{document} be a finite extension of the field \begin{document}$ \Bbb F_2 $\end{document} and \begin{document}$ g(x) = x^2+\alpha x+1 $\end{document} a quadratic polynomial over \begin{document}$ \Bbb F_{2^m} $\end{document} . In this paper, two classes of cyclic extended double-error-correcting Goppa codes are proposed. We obtain the following two classes of Goppa codes: (1) cyclic extended Goppa code with the irreducible polynomial \begin{document}$ g(x) $\end{document} and \begin{document}$ L = \Bbb F_{2^m}\cup \{\infty\} $\end{document} ; (2) cyclic extended Goppa code with the reducible polynomial \begin{document}$ g(x) $\end{document} and \begin{document}$ |L'| = 2^m-1 $\end{document} . In addition, the parameters of above cyclic extended Goppa codes are given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom