z-logo
open-access-imgOpen Access
Upper bounds on the length function for covering codes with covering radius $ R $ and codimension $ tR+1 $
Author(s) -
Alexander A. Davydov,
Stefano Marcugini,
Fernanda Pambianco
Publication year - 2022
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2021074
Subject(s) - mathematics , combinatorics , codimension , prime power , upper and lower bounds , power function , prime (order theory) , mathematical analysis
The length function \begin{document}$ \ell_q(r,R) $\end{document} is the smallest length of a \begin{document}$ q $\end{document} -ary linear code with codimension (redundancy) \begin{document}$ r $\end{document} and covering radius \begin{document}$ R $\end{document} . In this work, new upper bounds on \begin{document}$ \ell_q(tR+1,R) $\end{document} are obtained in the following forms:\begin{document}$ \begin{equation*} \begin{split}&(a)\; \ell_q(r,R)\le cq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &\phantom{(a)\; } q\;{\rm{ is \;an\; arbitrary \;prime\; power}},\; c{\rm{ \;is\; independent \;of\; }}q. \end{split} \end{equation*} $\end{document}\begin{document}$ \begin{equation*} \begin{split}&(b)\; \ell_q(r,R)< 3.43Rq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &\phantom{(b)\; } q\;{\rm{ is \;an\; arbitrary\; prime \;power}},\; q\;{\rm{ is \;large\; enough}}. \end{split} \end{equation*} $\end{document}In the literature, for \begin{document}$ q = (q')^R $\end{document} with \begin{document}$ q' $\end{document} a prime power, smaller upper bounds are known; however, when \begin{document}$ q $\end{document} is an arbitrary prime power, the bounds of this paper are better than the known ones. For \begin{document}$ t = 1 $\end{document} , we use a one-to-one correspondence between \begin{document}$ [n,n-(R+1)]_qR $\end{document} codes and \begin{document}$ (R-1) $\end{document} -saturating \begin{document}$ n $\end{document} -sets in the projective space \begin{document}$ \mathrm{PG}(R,q) $\end{document} . A new construction of such saturating sets providing sets of small size is proposed. Then the \begin{document}$ [n,n-(R+1)]_qR $\end{document} codes, obtained by geometrical methods, are taken as the starting ones in the lift-constructions (so-called " \begin{document}$ q^m $\end{document} -concatenating constructions") for covering codes to obtain infinite families of codes with growing codimension \begin{document}$ r = tR+1 $\end{document} , \begin{document}$ t\ge1 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom