z-logo
open-access-imgOpen Access
New quantum codes from metacirculant graphs via self-dual additive $\mathbb{F}_4$-codes
Author(s) -
Padmapani Seneviratne,
Martianus Frederic Ezerman
Publication year - 2022
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2021073
Subject(s) - mathematics , qubit , combinatorics , dual (grammatical number) , symplectic geometry , discrete mathematics , quantum , pure mathematics , quantum mechanics , physics , art , literature
We use symplectic self-dual additive codes over \begin{document}$ \mathbb{F}_4 $\end{document} obtained from metacirculant graphs to construct, for the first time, \begin{document}$ \left[\kern-0.15em\left[ {\ell, 0, d} \right]\kern-0.15em\right] $\end{document} qubit codes with parameters \begin{document}$ (\ell,d) \in \{(78, 20), (90, 21), (91, 22), (93,21),(96,22)\} $\end{document} . Secondary constructions applied to the qubit codes result in many new qubit codes that perform better than the previous best-known.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom