New quantum codes from metacirculant graphs via self-dual additive $\mathbb{F}_4$-codes
Author(s) -
Padmapani Seneviratne,
Martianus Frederic Ezerman
Publication year - 2022
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2021073
Subject(s) - mathematics , qubit , combinatorics , dual (grammatical number) , symplectic geometry , discrete mathematics , quantum , pure mathematics , quantum mechanics , physics , art , literature
We use symplectic self-dual additive codes over \begin{document}$ \mathbb{F}_4 $\end{document} obtained from metacirculant graphs to construct, for the first time, \begin{document}$ \left[\kern-0.15em\left[ {\ell, 0, d} \right]\kern-0.15em\right] $\end{document} qubit codes with parameters \begin{document}$ (\ell,d) \in \{(78, 20), (90, 21), (91, 22), (93,21),(96,22)\} $\end{document} . Secondary constructions applied to the qubit codes result in many new qubit codes that perform better than the previous best-known.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom