
A proof of the conjectured run time of the Hafner-McCurley class group algorithm
Author(s) -
JeanFrançois Biasse,
Muhammed Rashad Erukulangara
Publication year - 2021
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2021055
Subject(s) - mathematics , combinatorics , order (exchange) , discriminant , generalization , class (philosophy) , ideal (ethics) , binary logarithm , discrete mathematics , mathematical analysis , philosophy , finance , epistemology , artificial intelligence , computer science , economics
We present a proof under a generalization of the Riemann Hypothesis that the class group algorithm of Hafner and McCurley runs in expected time \begin{document}$ e^{\left(3/\sqrt{8}+o(1)\right)\sqrt{\log d\log\log d}} $\end{document} where \begin{document}$ -d $\end{document} is the discriminant of the input imaginary quadratic order. In the original paper, an expected run time of \begin{document}$ e^{\left(\sqrt{2}+o(1)\right)\sqrt{\log d\log\log d}} $\end{document} was proven, and better bounds were conjectured. To achieve a proven result, we rely on a mild modification of the original algorithm, and on recent results on the properties of the Cayley graph of the ideal class group.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom