Open Access
A proof of the conjectured run time of the Hafner-McCurley class group algorithm
Author(s) -
JeanFrançois Biasse,
Muhammed Rashad Erukulangara
Publication year - 2023
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2021055
Subject(s) - mathematics , combinatorics , order (exchange) , discriminant , generalization , class (philosophy) , ideal (ethics) , binary logarithm , discrete mathematics , mathematical analysis , philosophy , finance , epistemology , artificial intelligence , computer science , economics
We present a proof under a generalization of the Riemann Hypothesis that the class group algorithm of Hafner and McCurley runs in expected time \begin{document}$ e^{\left(3/\sqrt{8}+o(1)\right)\sqrt{\log d\log\log d}} $\end{document} where \begin{document}$ -d $\end{document} is the discriminant of the input imaginary quadratic order. In the original paper, an expected run time of \begin{document}$ e^{\left(\sqrt{2}+o(1)\right)\sqrt{\log d\log\log d}} $\end{document} was proven, and better bounds were conjectured. To achieve a proven result, we rely on a mild modification of the original algorithm, and on recent results on the properties of the Cayley graph of the ideal class group.