New quantum codes from skew constacyclic codes
Author(s) -
Ram Krishna Verma,
Om Prakash,
Ashutosh Singh,
Habibul Islam
Publication year - 2021
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2021028
Subject(s) - dual polyhedron , mathematics , skew , combinatorics , quantum , finite field , euclidean geometry , commutative property , discrete mathematics , duality (order theory) , physics , quantum mechanics , geometry , astronomy
For an odd prime \begin{document}$ p $\end{document} and positive integers \begin{document}$ m $\end{document} and \begin{document}$ \ell $\end{document} , let \begin{document}$ \mathbb{F}_{p^m} $\end{document} be the finite field with \begin{document}$ p^{m} $\end{document} elements and \begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document} . Thus \begin{document}$ R_{\ell,m} $\end{document} is a finite commutative non-chain ring of order \begin{document}$ p^{2^{\ell} m} $\end{document} with characteristic \begin{document}$ p $\end{document} . In this paper, we aim to construct quantum codes from skew constacyclic codes over \begin{document}$ R_{\ell,m} $\end{document} . First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom