z-logo
open-access-imgOpen Access
On additive MDS codes over small fields
Author(s) -
Simeon Ball,
Guillermo Gamboa,
Michel Lavrauw
Publication year - 2021
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2021024
Subject(s) - mathematics , conjecture , combinatorics , code (set theory) , discrete mathematics , set (abstract data type) , computer science , programming language
Let \begin{document}$ C $\end{document} be a \begin{document}$ (n,q^{2k},n-k+1)_{q^2} $\end{document} additive MDS code which is linear over \begin{document}$ {\mathbb F}_q $\end{document} . We prove that if \begin{document}$ n \geq q+k $\end{document} and \begin{document}$ k+1 $\end{document} of the projections of \begin{document}$ C $\end{document} are linear over \begin{document}$ {\mathbb F}_{q^2} $\end{document} then \begin{document}$ C $\end{document} is linear over \begin{document}$ {\mathbb F}_{q^2} $\end{document} . We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over \begin{document}$ {\mathbb F}_q $\end{document} for \begin{document}$ q \in \{4,8,9\} $\end{document} . We also classify the longest additive MDS codes over \begin{document}$ {\mathbb F}_{16} $\end{document} which are linear over \begin{document}$ {\mathbb F}_4 $\end{document} . In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for \begin{document}$ q \in \{ 2,3\} $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom