${\sf {FAST}}$: Disk encryption and beyond
Author(s) -
Debrup Chakraborty,
Sebati Ghosh,
Cuauhtémoc Mancillas-López,
Palash Sarkar
Publication year - 2020
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2020108
Subject(s) - encryption , hash function , learning with errors , block cipher , computer science , provable security , cryptography , mdc 2 , disk encryption , theoretical computer science , key (lock) , mathematics , function (biology) , cryptographic hash function , algorithm , 40 bit encryption , double hashing , operating system , computer security , evolutionary biology , biology
This work introduces ${\sf {FAST}}$ which is a new family of tweakable enciphering schemes. Several instantiations of ${\sf {FAST}}$ are described. These are targeted towards two goals, the specific task of disk encryption and a more general scheme suitable for a wide variety of practical applications. A major contribution of this work is to present detailed and careful software implementations of all of these instantiations. For disk encryption, the results from the implementations show that ${\sf {FAST}}$ compares very favourably to the IEEE disk encryption standards XCB and EME2 as well as the more recent proposal AEZ. ${\sf {FAST}}$ is built using a fixed input length pseudo-random function and an appropriate hash function. It uses a single-block key, is parallelisable and can be instantiated using only the encryption function of a block cipher. The hash function can be instantiated using either the Horner's rule based usual polynomial hashing or hashing based on the more efficient Bernstein-Rabin-Winograd polynomials. Security of ${\sf {FAST}}$ has been rigorously analysed using the standard provable security approach and concrete security bounds have been derived. Based on our implementation results, we put forward ${\sf {FAST}}$ as a serious candidate for standardisation and deployment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom