z-logo
open-access-imgOpen Access
Time and space multi-manned assembly line balancing problem using genetic algorithm
Author(s) -
Nessren Zamzam,
Ahmed Elakkad
Publication year - 2021
Publication title -
journal of industrial engineering and management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.385
H-Index - 29
eISSN - 2013-8423
pISSN - 2013-0953
DOI - 10.3926/jiem.3542
Subject(s) - task (project management) , line (geometry) , assembly line , heuristic , computer science , genetic algorithm , space (punctuation) , mathematical optimization , simple (philosophy) , algorithm , simulation , real time computing , engineering , mathematics , artificial intelligence , systems engineering , mechanical engineering , philosophy , geometry , epistemology , operating system
Purpose: Time and Space assembly line balancing problem (TSALBP) is the problem of balancing the line taking the area required by the task and to store the tools into consideration. This area is important to be considered to minimize unplanned traveling distance by the workers and consequently unplanned time waste. Although TSALBP is a realistic problem that express the real-life situation, and it became more practical to consider multi-manned assembly line to get better space utilization, few literatures addressed the problem of time and space in simple assembly line and only one in multi-manned assembly line. In this paper the problem of balancing bi-objective time and space multi-manned assembly line is proposedDesign/methodology/approach: Hybrid genetic algorithm under time and space constraints besides assembly line conventional constraints is used to model this problem. The initial population is generated based on conventional assembly line heuristic added to random generations. The objective of this model is to minimize number of workers and number of stations.Findings: The results showed the effectiveness of the proposed model in solving multi-manned time and space assembly line problem. The proposed method gets better results in solving real-life Nissan problem compared to the literature. It is also found that there is a relationship between the variability of task time, maximum task time and cycle time on the solution of the problem. In some problem features it is more appropriate to solve the problem as simple assembly line than multi-manned assembly line.Originality/value: It is the first article to solve the problem of balancing multi-manned assembly line under time and area constraint using genetic algorithm. A relationship between the problem features and the solution is found according to it, the solution method (one sided or multi-manned) is defined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here