z-logo
open-access-imgOpen Access
Co-expression of P1A35-43/β2m fusion protein and co-stimulatory molecule CD80 elicits effective anti-tumor immunity in the P815 mouse mastocytoma tumor model
Author(s) -
Ge Ge
Publication year - 2009
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or_00000557
Subject(s) - cd80 , epitope , ctl* , biology , major histocompatibility complex , mhc class i , microbiology and biotechnology , cd8 , immunogenicity , t cell , mastocytoma , immune system , cytotoxic t cell , antigen , in vitro , immunology , biochemistry , cd40
A strong CTL response is dependent upon a high level of expression of specific class I major histocompatibility complex (MHC)/peptide complexes at the cell surface. An epitope-linked beta2-microglobulin (beta2m) molecule could provide a simple and more efficient means to enhance the formation of defined MHC/peptide complexes. However, the ability of an epitope-linked beta2m molecule to elicit primary CTL responses in vivo is still unknown. In this study, we modified the P1A tumor cell vaccine by addition of the tumor-associated epitope (TAE)-linked beta2m molecule and co-stimulatory molecule CD80 to improve the efficiency in the application of the vaccine. A eukaryotic co-expression vector consisting of the P1A35-43-linked beta2m molecule and the murine CD80 gene was constructed. P815 cell lines stably expressing P1A35-43-linked beta2m molecule and/or CD80 were established after transfection, by selection under G418. Administration of these inactivated tumor cell vaccines allowed the TAE-specific CD8+ T cell responses to be examined in vivo. Our results indicate that immunization with P815 cells expressing both the P1A35-43-linked beta2m molecule and the murine CD80 gene elicited a significantly stronger antitumor immune response than the single-modified tumor cell vaccines (expressing either P1A35-43-linked beta2m or CD80 alone). These findings support the feasibility and effectiveness of developing a dual-modified tumor cell vaccine consisting of the epitope-linked beta2m molecule and a co-stimulatory molecule.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom