z-logo
open-access-imgOpen Access
Triptolide induces apoptosis through the calcium/calmodulin‑dependent protein kinase kinaseβ/AMP‑activated protein kinase signaling pathway in non‑small cell lung cancer cells
Author(s) -
Tao Ren,
Yijun Tang,
Meifang Wang,
Hansheng Wang,
Yan Liu,
Xin Qian,
Chan Chang,
Mingwei Chen
Publication year - 2020
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2020.7763
Subject(s) - triptolide , ampk , protein kinase a , apoptosis , kinase , protein kinase b , cancer research , chemistry , signal transduction , pharmacology , biology , microbiology and biotechnology , biochemistry
Triptolide, a triterpene extracted from the Chinese herb Tripterygium wilfordii, has been reported to exert multiple bioactivities, including immunosuppressive, anti‑inflammatory and anticancer effects. Although the anticancer effect of triptolide has attracted significant attention, the specific anticancer mechanism in non‑small‑cell lung cancer (NSCLC) remains unclear. The present study aimed to investigate the anticancer effect of triptolide in the H1395 NSCLC cell line and to determine its mechanism of action. The results revealed that triptolide significantly inhibited the cell viability of NSCLC cells in a dose‑dependent manner, which was suggested to be through inducing apoptosis. In addition, triptolide was revealed to activate the calcium (Ca2+)/calmodulin‑dependent protein kinase kinase β (CaMKKβ)/AMP‑activated protein kinase (AMPK) signaling pathway by regulating the intracellular Ca2+ concentration levels, which increased the phosphorylation levels of AMPK and reduced the phosphorylation levels of AKT, ultimately leading to apoptosis. The CaMKKβ blocker STO‑609 and the AMPK blocker Compound C significantly inhibited the apoptosis‑promoting effect of triptolide. In conclusion, the results of the present study suggested that triptolide may induce apoptosis through the CaMKKβ‑AMPK signaling pathway and may be a promising drug for the treatment of NSCLC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom