Troglitazone exerts metabolic and antitumor effects on T47D breast cancer cells by suppressing mitochondrial pyruvate availability
Author(s) -
KyungHo Jung,
Jin Lee,
JinWon Park,
Seung Hwan Moon,
Young Cho,
KyungHan Lee
Publication year - 2019
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2019.7436
Subject(s) - troglitazone , glutamine , cancer cell , glycolysis , biology , mitochondrion , cytotoxic t cell , glucose uptake , endocrinology , microbiology and biotechnology , medicine , cancer research , metabolism , biochemistry , cancer , receptor , in vitro , peroxisome proliferator activated receptor , insulin , genetics , amino acid
The aim of the present study was to investigate the metabolic and anticancer effects of troglitazone (TGZ) with a focus on the potential role of mitochondrial pyruvate utilization. 2‑Deoxyglucose (2‑DG) was more cytotoxic in CT26 cancer cells compared with T47D cells, despite a smaller suppression of glucose uptake. On the other hand, TGZ caused a more prominent shift to glycolytic metabolism and was more cytotoxic in T47D cells. Both effects of TGZ on T47D cells were dose‑dependently reversed by addition of methyl pyruvate (mPyr), indicating suppression of mitochondrial pyruvate availability. Furthermore, UK5099, a specific mitochondrial pyruvate carrier inhibitor, closely simulated the metabolic and antitumor effects of TGZ and their reversal by mPyr. This was accompanied by a substantial reduction of activated p70S6K. In CT26 cells, UK5099 did not reduce activated p70S6K and only modestly decreased cell proliferation. In these cells, combining glutamine restriction with UK5099 further increased glucose uptake and completely suppressed cell proliferation. Thus, TGZ‑mediated inhibition of mitochondrial pyruvate utilization is an effective treatment for cancer cells that are more dependent on mitochondrial glucose metabolism. By contrast, cancer cells that are more glycolysis‑dependent may require suppression of glutamine utilization in addition to blocking mitochondrial pyruvate availability for a full antitumor effect.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom