z-logo
open-access-imgOpen Access
TRAIP regulates Histone�H2B monoubiquitination in DNA damage response pathways
Author(s) -
Ye Han,
Miyong Yun,
Minji Choi,
SeokGeun Lee,
Hongtae Kim
Publication year - 2019
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2019.7092
Subject(s) - biology , histone h2b , cancer research , adenocarcinoma , oncogene , cell cycle , dna damage , histone , microbiology and biotechnology , cancer , genetics , dna
Histone H2B monoubiquitination has been shown to play critical roles in diverse cellular processes including DNA damage response. Although recent data indicate that H2B monoubiquitination is strongly connected with tumor progression and regulation, the implications of this modification in lung adenocarcinoma are relatively unknown. In the present study, we demonstrated the clinical implication of H2B monoubiquitination and the potential role of tumor necrosis factor receptor‑associated factor‑interacting protein (TRAIP) in regulating its modification in lung adenocarcinoma. Immunohistochemical analysis showed that H2B monoubiquitination was significantly downregulated in 68 human lung adenocarcinoma patient samples compared to their normal adjacent tissues. Depletion of TRAIP by specific siRNA treatment markedly decreased ionizing radiation (IR)‑induced H2B monoubiquitination. In addition, deletion mutants without RING domain or C‑terminus of TRAIP diminished the ability to induce H2B monoubiquitination at lysine 120. Notably, the nuclear expression of TRAIP was positively related with H2B monoubiquitination levels in patients with lung adenocarcinoma. Furthermore, statistical analysis indicated that low levels of both TRAIP and H2B monoubiquitination, not each alone, in patients with lung adenocarcinoma were strongly correlated with poor survival. Taken together, these results suggest that TRAIP is a novel regulator of H2B monoubiquitination in DNA damage response and cancer development in lung adenocarcinoma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom