z-logo
open-access-imgOpen Access
Ribosomal protein S3 regulates XIAP expression independently of the NF-κB pathway in breast cancer cells
Author(s) -
Hisako Ono,
Yosuke Iizumi,
Wakana Goi,
Yoshihiro Sowa,
Tetsuya Taguchi,
Toshiyuki Sakai
Publication year - 2017
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2017.6008
Subject(s) - xiap , inhibitor of apoptosis , cancer research , gene knockdown , biology , curcumin , cancer cell , apoptosis , oncogene , cancer , downregulation and upregulation , chemistry , cell cycle , programmed cell death , gene , caspase , biochemistry , genetics
The X-linked inhibitor of apoptosis (XIAP) confers the resistance of various types of cancer to standard chemotherapeutic agents such as anthracycline and taxane. In breast cancer, XIAP is known to be overexpressed. However, the mechanisms underlying the overexpression of XIAP remain currently unclear. In order to elucidate the mechanisms responsible for the overexpression of the XIAP protein in breast cancer, we attempted to clarify the mechanisms by which the natural compound curcumin downregulates XIAP in breast cancer cells. In that process, we identified the ribosomal protein S3 (RPS3) as a curcumin‑binding protein using curcumin-fixed magnetic FG beads. The knockdown of RPS3 inhibited cell growth and induced apoptosis as well as the downregulation of XIAP in breast cancer cells. Although RPS3 is known to directly bind to and activate the nuclear factor-κB (NF-κB), which induces several anti-apoptotic genes such as XIAP, the knockdown of RPS3 unexpectedly reduced the levels of the XIAP protein, but not the mRNA level of XIAP and the transcription factor NF-κB activity. These results reveal that RPS3 upregulates XIAP independently of the NF-κB pathway in human breast cancer cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom