CUTL1 induces epithelial-mesenchymal transition in non-small cell lung cancer
Author(s) -
Junfeng Wang,
Yanbo Wang,
Dawei Sun,
Fenghai Ren,
Sainan Pang,
Shidong Xu
Publication year - 2017
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2017.5571
Subject(s) - epithelial–mesenchymal transition , oncogene , cell cycle , biology , cancer research , ectopic expression , transforming growth factor , transcription factor , cell growth , cell , carcinogenesis , lung cancer , cancer , pathology , metastasis , microbiology and biotechnology , cell culture , medicine , gene , biochemistry , genetics
The homeobox transcription factor CUTL1 has been associated with cellular proliferation and cell cycle progression, and CUTL1 functions as an oncogene. The aim of the present study was to investigate whether CUTL1 participates in epithelial-mesenchymal transition (EMT). The expression levels of CUTL1, E-cadherin, N-cadherin and Snail were determined by immunohistochemistry assay, immunofluorescence assay or real-time quantitative reverse transcription PCR. Their roles in non-small cell lung cancer (NSCLC) were assessed by functional analyses. Protein expression was detected by western blot analysis. The CUTL1 expression levels are higher in non-small cell lung cancer (NSCLC) tissues. High CUTL1 expression in NSCLC is associated with the mesenchymal-like phenotype. Mechanistically, CUTL1 upregulates transforming growth factor β receptor I (TβR-I) expression, and the TβR-I inhibitor SB431542 abolishes EMT elicited by ectopic CUTL1 expression. Transforming growth factor β (TGF-β) signaling is essential for CUTL1-induced EMT in NSCLC cells. CUTL1 is downstream of TGF-β signaling and CUTL1 is involved in the expression of the TβR-I. This study indicates that CUTL1 may be a potential target for anti-lung cancer therapy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom