z-logo
open-access-imgOpen Access
MicroRNA-361-5p inhibits epithelial-to-mesenchymal transition of glioma cells through targeting Twist1
Author(s) -
Xi Zhang,
Chunyan Wei,
Jin Li,
Jiali Liu,
Jianqiang Qu
Publication year - 2017
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2017.5406
Subject(s) - glioma , oncogene , epithelial–mesenchymal transition , microrna , cancer research , biology , cell cycle , western blot , molecular medicine , cell , mesenchymal stem cell , cancer , microbiology and biotechnology , metastasis , gene , genetics
MicroRNA-361-5p (miR-361-5p) has been reported to be dysregulated in various human cancer types. However, the function of miR-361-5p in glioma remains unknown. In the present study, we aimed to investigate the biological functions of miR-361-5p in regulating glioma progression and the underlying molecular mechanism. We found that miR-361-5p was significantly decreased in glioma tissues and cell lines as detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Functional analysis revealed that miR-361-5p overexpression significantly inhibited glioma cell migration, invasion and epithelial-mesenchymal transition (EMT) whereas suppression of miR-361-5p showed opposite effects. Bioinformatic analysis showed that Twist1, a critical EMT inducer, was a predicted target of miR-361-5p which was validated by dual-luciferase reporter assay, RT-qPCR and western blot analysis. Further analysis indicated that miR-361-5p regulates the Twist1/Bmi-1 signaling axis. Rescue experiments showed that restoration of Twist1 expression significantly reversed the suppressive effect of miR-361-5p on cell migration, invasion and EMT. Taken together, the present study demonstrated an important role of miR-361-5p in glioma - which regulated the EMT of glioma cells by targeting and regulating Twist1. These findings provide novel insight into understanding the role and mechanism of miR-361-5p in regulating the biolo-gical behavior of glioma cells and suggest that miR-361-5p is a novel potential therapeutic target for glioma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom