z-logo
open-access-imgOpen Access
RNAi-mediated downregulation of cyclin Y to attenuate human breast cancer cell growth
Author(s) -
Yan Feng,
Xiaoming Wang,
Mingchen Zhu,
Xiao Hu
Publication year - 2016
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2016.5126
Subject(s) - cell cycle , small hairpin rna , cell growth , cyclin , gene knockdown , rna interference , carcinogenesis , microbiology and biotechnology , cancer research , flow cytometry , biology , cell , chemistry , cancer , cell culture , rna , genetics , gene
Cyclin Y (CCNY) is a newly identified PFTK1 interacting protein and has been found to be associated with the proliferation and tumorigenesis of human non-small cell lung cancer. In the present study, we analyzed the expression levels of CCNY in 65 cases of breast cancer (BC) tissues and in four BC cell lines, BT-474, MDA-MB-231, T-47D and MCF-7. Lentivirus-mediated short hairpin RNA (shRNA) was employed to knock down CCNY expression in MCF-7 and MDA-MB-231 cells. The effects of CCNY depletion on cell growth were examined by MTT, colony formation and flow cytometry assays. The results showed that immunohistochemical expression of CCNY in tumor tissues is stronger than that in normal tissues. CCNY was also expressed in all four BC cells. The knockdown of CCNY resulted in a significant reduction in cell proliferation and colony formation ability. Cell cycle analysis showed that CCNY knockdown arrested MDA-MB‑231 cells in the G0/G1 phase. Furthermore, depletion of CCNY inhibited BC cell growth via the activation of Bad and GSK3β, as well as cleavages of PARP and caspase-3 in a p53-dependent manner. Therefore, we believe that CCNY has biological effect in BC development, and its inhibition via an RNA interference lentiviral system may provide a therapeutic option for BC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom