Methylation of the SEPT9_v2 promoter as a novel marker for the detection of circulating tumor DNA in breast cancer patients
Author(s) -
Saki Matsui,
Naofumi Kagara,
Chieko Mishima,
Yasuto Naoi,
Masafumi Shimoda,
Atsushi Shimomura,
Kenzo Shimazu,
Seung Jin Kim,
Shinzaburo Noguchi
Publication year - 2016
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2016.5004
Subject(s) - breast cancer , dna methylation , methylation , cancer , bisulfite sequencing , ca15 3 , cancer research , oncogene , metastatic breast cancer , biology , medicine , oncology , microbiology and biotechnology , pathology , cell cycle , dna , gene expression , gene , genetics
The aim of the present study was to evaluate the promoter methylation status of SEPT9_v2 in breast cancer and to detect this methylated gene in circulating tumor DNA (ctDNA) in plasma. Bisulfite sequencing was performed with a next generation sequencer. Methylation of the SEPT9_v2 promoter was found in 67% (8/12) of breast cancer cell lines and 53% (10/19) of breast tumor tissue, but not in normal breast tissue (0/19). A clear inverse correlation was observed between the expression of SEPT9_v2 mRNA and the methylation index (MI) both in cell lines and breast cancer tissues. The MI of SEPT9_v2 was significantly higher in non-basal subtype of breast cancer (13.0%, n=84) than in basal subtype (3.0%, n=23) (P<0.0001). Methylated SEPT9_v2 ctDNA in plasma was detected in 11% (9/82) of primary breast cancer patients and 52% (26/50) of metastatic breast cancer patients, but not in the healthy controls (0/51). These results indicate that SEPT9_v2 promoter hypermethylation, which silences the expression of SEPT9_v2 mRNA, is observed in a significant proportion of breast tumors, and that methylated SEPT9_v2 may serve as a novel tumor marker for breast cancer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom