Plumbagin reduces chronic lymphocytic leukemia cell survival by downregulation of Bcl-2 but upregulation of the Bax protein level
Author(s) -
Chunling Fu,
Yanqing Gong,
Xuanxuan Shi,
Zengtian Sun,
Mingshan Niu,
Wei Sang,
Linyan Xu,
Feng Zhu,
Ying Wang,
Kailin Xu
Publication year - 2016
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2016.4950
Subject(s) - plumbagin , cell cycle , apoptosis , chronic lymphocytic leukemia , downregulation and upregulation , cell growth , cancer research , leukemia , biology , cell , immunology , biochemistry , genetics , gene
Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, and mainly originates from an accumulation of abnormal B cells caused by the dysregulation of cell proliferation and apoptosis rates. The aberration of apoptosis-related genes in CLL cells results in defective apoptosis of CLL cells in response to traditional therapeutic medicine. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone), a natural compound from Plumbago zeylinica, has been shown to exhibit pro-apoptotic activities in tumor cells. In the present study, we report that plumbagin effectively inhibited CLL cell viability with a lower dose compared to fludarabine, and inhibited cell proliferation in a dose-dependent manner. In addition, plumbagin promoted accumulation of MEC-1 cells in the S phase, and blocked cell cycle transition of HG3 cells from G0/G1 to S phase. Molecularly, plumbagin markedly induced CLL cell apoptosis through reduction of Bcl-2, but through an increase in the Bax protein level. These results suggest that plumbagin may be considered as a potential anticancer agent for CLL therapy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom