z-logo
open-access-imgOpen Access
USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells
Author(s) -
Zhen Ning,
Aman Wang,
Jinxiao Liang,
Yunpeng Xie,
Jiwei Liu,
Qiu Yan,
Zhongyu Wang
Publication year - 2014
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2014.3354
Subject(s) - epithelial–mesenchymal transition , ezrin , cancer research , cell cycle , metastasis , biology , pancreatic cancer , oncogene , cell migration , focal adhesion , signal transduction , microbiology and biotechnology , cancer , cell , cytoskeleton , biochemistry , genetics
Epithelial-mesenchymal transition (EMT) contributes to the occurrence and development of tumors, particularly to the promotion of tumor invasion and metastasis. As a newly discovered ubiquitin hydrolase family member, USP22 plays a key role in the malignant transformation of tumors and the regulation of the cell cycle. However, recent studies on USP22 have primarily focused on its role in cell cycle regulation, and the potential mechanism underlying the promotion of tumor invasion and metastasis by abnormal USP22 expression has not been reported. Our studies revealed that the overexpression of USP22 in PANC-1 cells promoted Ezrin redistribution and phosphorylation and cytoskeletal remodeling, upregulated expression of the transcription factors Snail and ZEB1 to promote EMT, and increased cellular invasion and migration. In contrast, blockade of USP22 expression resulted in the opposite effects. In addition, the focal adhesion kinase (FAK) signaling pathway was shown to play a key role in the process of EMT induction in PANC-1 cells by USP22. Thus, the present study suggests that USP22 acts as a regulatory protein for EMT in pancreatic cancer, which may provide a new approach for the targeted therapy of pancreatic cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom