CLC604 preferentially inhibits the growth of HER2-overexpressing cancer cells and sensitizes these cells to the inhibitory effect of Taxol in vitro and in vivo
Author(s) -
JangChang Lee,
LiChen Chou,
JIN-CHEMG LIEN,
Jia-Chiun Wu,
ChiHung Huang,
ChaoHo Chung,
FangYu Lee,
LiJiau Huang,
ShengChu Kuo,
TzongDer Way
Publication year - 2013
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2013.2634
Subject(s) - in vivo , oncogene , cancer cell , cell cycle , apoptosis , cancer research , in vitro , cancer , cell growth , biology , heat shock protein , chemistry , pharmacology , biochemistry , gene , genetics , microbiology and biotechnology
HER2 has become a solicitous therapeutic target in metastatic and clinical drug-resistant cancer. Here, we evaluated whether or not 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) and its furopyrazole and thienopyrazole analogues repress the expression of the HER2 protein. Among the test compounds, (1-benzyl-3-(p-hydroxymethylphenyl)-5-methylfuro[3,2-c]pyrazol) (CLC604), an isosteric analogue of YC-1, significantly suppressed the expression of HER2, and preferentially inhibited cell proliferation and induced apoptosis in HER2-overexpressing cancer cells. Our results revealed that CLC604 reduced HER2 expression through a post-transcriptional mechanism and involvement of proteasomal activity. CLC604 disrupted the association of 90-kDa heat shock protein (Hsp90) with HER2 resulting from the inhibition of Hsp90 ATPase activity. Moreover, we found that CLC604 significantly enhanced the antitumor efficacy of clinical drugs against HER2-overexpressing tumors and efficiently reduced HER2-induced drug resistance in vitro and in vivo. These findings suggest that CLC604 should be developed further as a novel antitumor drug candidate for the treatment of drug-resistant cancer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom