z-logo
open-access-imgOpen Access
Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small cell lung cancer A549 cells
Author(s) -
InSook An,
Sungkwan An,
Ku Jung Kwon,
Young Joo Kim,
Seunghee Bae
Publication year - 2012
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2012.2136
Subject(s) - microrna , lung cancer , biology , a549 cell , cancer research , cell cycle , oncogene , ginsenoside , cell growth , angiogenesis , molecular medicine , cancer , apoptosis , oncology , gene , medicine , ginseng , pathology , genetics , alternative medicine
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer insensitive to chemotherapy. Efforts are, therefore, directed toward understanding the molecular mechanisms of chemotherapy insensitivity and the development of new anticancer drugs. Ginsenoside Rh2, one of the components in ginseng saponin, has been shown to have anti-proliferative effect on human NSCLC cells and is being studied as a therapeutic drug for NSCLC. microRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in cancer progression and prevention. However, the miRNA portrait of ginsenoside Rh2-treated NSCLC cells has not yet been studied. In this study, we identified a unique set of changes in the miRNA expression profile in response to Rh2 treatment in the human NSCLC cell line A549. Using miRNA microarray analysis, we identified 44 and 24 miRNAs displaying changes in expression greater than 2-fold in Rh2-treated A549 cells. In addition, using an miRNA target prediction program, we discovered that these miRNAs are predicted to have several target genes related to angiogenesis, apoptosis, chromatic modification, cell proliferation and differentiation. Thus, these results may assist in the better understanding of the anticancer mechanism of Rh2 in NSCLC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom