z-logo
open-access-imgOpen Access
Functional effects of the MLH1-93G>A polymorphism on MLH1/EPM2AIP1 promoter activity
Author(s) -
Sheron Perera,
Miralem Mrkonjic,
James B. Rawson,
Bharati Bapat
Publication year - 2010
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2010.1129
Subject(s) - biology , mlh1 , oncogene , promoter , allele , transfection , microbiology and biotechnology , cancer research , luciferase , gene , cell cycle , colorectal cancer , dna mismatch repair , genetics , cancer , gene expression
Defective mismatch repair leads to the microsatellite instability (MSI) phenotype of colorectal cancer (CRC). We previously showed that the MLH1-93G>A promoter polymorphism is strongly associated with MSI tumours, suggesting a modifier role for this polymorphism in CRC. The MLH1 promoter is bi-directional with the EPM2AIP1 gene located on the antisense strand. In order to evaluate the functional effects of this polymorphism, we transfected a panel of CRC, endometrial cancer and non-tumourigenic cell lines with MLH1 luciferase promoter constructs. We used constructs in reverse orientation to assess the effect of this polymorphism on EPM2AIP1. The luciferase activities were compared using a two-sided Student's t-test. Electrophoretic mobility shift assays (EMSAs) were used to evaluate whether differential protein binding was responsible for the differences in promoter activity. We observed a higher level of activity with the -93G allele in all the cell lines observed; including the CRC cell line, HCT116 (P=0.002), the endometrial cancer cell line, HEC-1-A (P<0.001) and the normal colonic cell line, CCD-841-CoTr (P=0.002). This polymorphism also affected EPM2AIP1 transcription with the -93A allele demonstrating higher promoter activity in the HCT116 (P=0.007) and HEC-1-A (P=0.004) cells. The EMSA results suggest that this polymorphism alters the affinity of nuclear factors that bind to this region. Our findings indicate that the -93G>A polymorphism modifies the efficiency of MLH1/EPM2AIP1 transcription.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom