z-logo
open-access-imgOpen Access
Effects of microRNA‑20a on the proliferation, migration and apoptosis of multiple myeloma via the PTEN/PI3K/AKT signaling pathway
Author(s) -
Yanxia Jiang,
Hong Chang,
Guoan Chen
Publication year - 2018
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2018.8555
Subject(s) - pten , tensin , pi3k/akt/mtor pathway , protein kinase b , cancer research , biology , cell cycle , phosphoinositide 3 kinase , cell growth , signal transduction , microrna , apoptosis , microbiology and biotechnology , biochemistry , gene
Multiple myeloma (MM) is a heterogeneous disease with a poor prognosis. Circulating microRNAs (miRNAs) have shown potential as non-invasive prognostic biomarkers for heterogeneous diseases. miR-20a has been shown involved in various human cancers, and the phosphatase and tensin homolog/phosphoinositide 3-kinase/protein kinase B (PTEN/P13K/Akt) signaling pathway plays a key role in cell proliferation, migration and apoptosis. Here, we investigated the effect of miR-20a on the PTEN/PI3K/Akt signaling pathway during MM cell proliferation, migration and apoptosis. Reverse transcription quantitative polymerase chain reaction was applied to detect miR-20a expression in plasma from 30 MM patients and MM cell lines. CCK-8 assays, Transwell assays, Annexin V/PI double-staining and western blotting were performed to examine the protein expressions of PTEN, PI3K and Akt during cellullar proliferation, migration, cycling, and apoptosis. Significant upregulation of miR-20a and deregulation of PTEN were observed in MM cells. We also identified PTEN as a downstream target gene of miR-20a, which bound to the 3'-untranslated region of PTEN. Overexpression of miR-20a was associated with decreased PTEN expression, and treatment with miR-20a inhibitors decreased cell proliferation, migration and clonogenicity and reduced the protein expressions of PI3K and p-Akt but increased PTEN protein expression compared with blank and negative control groups. Taken together, these results showed that inhibition of miR-20a suppresses MM progression by modulating the PTEN/PI3K/Akt signaling pathway. These findings suggest that miR-20a may be a novel molecular therapeutic target for the treatment of MM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here