Advanced glycation end products influence oral cancer cell survival via Bcl-xl and Nrf-2 regulation in vitro
Author(s) -
ShunYao Ko,
Hshin-An Ko,
TzongMing Shieh,
Tzong-Cherng Chi,
HongI Chen,
YiTing Chen,
Ya-Hui Yu,
Shu-Han Yang,
Shu-Shing Chang
Publication year - 2017
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2017.5809
Subject(s) - glycation , molecular medicine , oncogene , cancer , cell cycle , in vitro , cancer research , bcl xl , apoptosis , cell , cancer cell , chemistry , pharmacology , medicine , programmed cell death , biochemistry , receptor
An irreversible non-enzymatic reaction between carbohydrates and proteins results in the formation of advanced glycation end products (AGEs). AGEs have been demonstrated to be a risk factor of complications in patients with diabetes mellitus (DM). Previous studies have suggested that patients with DM exhibit a higher rate of metastasis of oral cancer and a lower cancer-associated survival rate. The receptor for AGEs (RAGE) has been associated with angiogenesis and an increase in cancer malignancy. Previous studies have suggested that AGE-RAGE regulates cell migration via extracellular signal-regulated kinase (ERK) phosphorylation. Nuclear factor-erythroid 2-related factor 2 (Nrf-2) is associated with the regulation of tumor protein p53 (p53) and the apoptotic response of oral cancer cells. AGEs are associated with oral cancer; however, the mechanism underlying this association remains to be elucidated. The present study hypothesized that AGEs regulate Nrf-2 and downstream pathways through ERK phosphorylation. The results of the current study demonstrated that AGEs inhibit the expression of Nrf-2, p53 and Bcl-2 associated × apoptosis regulator, and increase the expression of apoptosis regulator Bcl-x protein. The effect of AGEs was inhibited through the use of the PD98059. The present study demonstrated that AGEs regulate the downstream pathways Nrf-2 and Bcl-xl via ERK phosphorylation. It is suggested that AGEs regulate the survival of oral cancer cells via Nrf-2 and Bcl-xl through p53 regulation, which explains the poor prognosis of patients with DM who have oral cancer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom