
FRAT1 expression regulates proliferation in colon cancer cells
Author(s) -
Kongxi Zhu,
Jianqiang Guo,
Hongjuan Wang,
Weihua Yu
Publication year - 2016
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2016.5300
Subject(s) - oncogene , small hairpin rna , colorectal cancer , cancer , molecular medicine , malignancy , cancer research , transfection , cell growth , cell cycle , biology , medicine , pathology , apoptosis , cell culture , gene knockdown , biochemistry , genetics
Colorectal cancer is one of the most common gastric malignancies worldwide. However, the underlying mechanism of colon cancer development and valuable indicators of the disease remain unclear. In this study, the expression of frequently rearranged in advanced T-cell lymphomas 1 (FRAT1) in colon cancer was investigated and the association between FRAT1 expression and biological properties of tumors was analyzed. A total of 147 colon cancer tissue samples and adjacent normal tissues were collected between January 2013 and June 2014. The FRAT1 gene and protein expression levels were analyzed in tissues with different TNM and pathological stages. Small hairpin RNAs (shRNAs) containing the human FRAT1 gene were constructed and transfected into colon cancer HT-29 cells. The proliferation and migration of the cells was also analyzed in relation to a reduction in FRAT1 expression. In colon cancer tissues, the expression of FRAT1 was significantly higher when compared with adjacent tissues. In addition, FRAT1 expression was found to positively correlate with the degree of tumor malignancy, and this difference was determined to be statistically significant (P<0.05). Following shRNA transfection in HT-29 cells to decrease the expression of FRAT1, the proliferation and migration of the HT-29 cells decreased (due to conversion of the shRNA into small interfering RNA). These results indicate that in colon cancer, FRAT1 may present a novel tool for analyzing the tumor progression and may be a novel therapeutic target for the treatment of colon cancer.