z-logo
open-access-imgOpen Access
MicroRNA-26a induces osteosarcoma cell growth and metastasis via the Wnt/β-catenin pathway
Author(s) -
Feng Qu,
CHUN-BAO LI,
BANG-TUO YUAN,
Qi Wei,
HONG-LIANG LI,
XUE-ZHEN SHEN,
Gang Zhao,
JIANG-TAO WANG,
YU-JIE LIU
Publication year - 2015
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2015.4073
Subject(s) - cell cycle , oncogene , osteosarcoma , microrna , wnt signaling pathway , molecular medicine , cancer research , catenin , metastasis , cell , cell growth , apoptosis , biology , cancer , microbiology and biotechnology , signal transduction , gene , genetics
MicroRNAs (miRNAs/miRs) are a type of highly conserved, small non-coding RNA that are vital to the post-transcriptional regulation of gene expression via base pairing with target mRNA 3'-untranslated regions (3'-UTRs). Several studies have indicated that the abnormal expression of miRNAs occurs frequently in human osteosarcoma (OS). In the present study, the role of miR-26a in the progression and metastasis of OS was investigated using reverse transcription-quantitative polymerase chain reaction, a luciferase activity assay, cell viability assay, in vitro migration and invasion assays, transfection and western blot analysis. miR-26a was upregulated in OS tissues and cell lines, and the expression of miR-26a was indicated to affect the proliferation, migration and invasion of OS Saos-2 cells. At the molecular level, the results showed that glycogen synthase kinase-3β (GSK-3β) was identified as a target of miR-26a, and the ectopic expression of miR-26a inhibited GSK-3β by directly binding to the 3'-UTR. Therefore, the expression of miR-26a was negatively correlated with GSK-3β in the OS tissues. These data suggest that miR-26a is significant in the proliferation of human OS cells due to the direct regulation of Wnt/β-catenin signaling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom