
Absence of the JAZF1/SUZ12 chimeric transcript in the immortalized non-neoplastic endometrial stromal cell line T HESCs
Author(s) -
Ioannis Panagopoulos
Publication year - 2010
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2010.185
Subject(s) - fusion gene , stromal cell , microbiology and biotechnology , biology , cell culture , cancer research , immortalised cell line , endometrial stromal sarcoma , chromosomal translocation , oncogene , cell , cell cycle , gene , genetics
Endometrial stromal sarcomas are rare malignancies, accounting for less than 10% of uterine sarcomas. The most characteristic chromosomal aberration of this tumor type is the translocation t(7;17)(p15-p21;q12-q21) leading to the fusion of two zinc finger genes, JAZF1 and SUZ12. Recently, the presence of the neoplastic JAZF1/SUZ12 fusion transcript was reported in normal cells of human endometrium. One of the positive samples for the JAZF1/SUZ12 transcript was the immortalized T HESCs cell line. This cell line was derived from the stromal cells obtained from an adult female with myomas and immortalized by transfection of a human telomerase gene. Since T HESCs has a normal karyotype and no fusion of the two genes occurs at the genomic level, the JAZF1/SUZ12 transcript was proposed to be generated by regulated trans-splicing between precursor RNAs for JAZF1 and SUZ12. However, no confirmatory reports currently exist. To determine whether the results could be reproduced, the T HESCs cell line was subjected to three different RT-PCR amplifications for the JAZF1/SUZ12 fusion transcript. RT-PCR assays did not amplify JUZF1/SUZ12 cDNA fragments in the T HESCs cell line, whereas the same assays easily generated JUZF1/SUZ12-amplified transcripts in an endometrial stromal cell sarcoma carrying the t(7;17) chromosomal aberration. Thus, the presence, if any, of a JUZF1/SUZ12 chimeric transcript in the immortalized normal T HESCs is not a constant, reproducible result.