z-logo
open-access-imgOpen Access
Down-regulation of HOXA4, HOXA7, HOXA10, HOXA11 and MEIS1 during monocyte-macrophage differentiation in THP-1 cells
Author(s) -
Sala
Publication year - 2009
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr_00000090
Subject(s) - thp1 cell line , oncogene , biology , monocyte , myeloid leukemia , monocytic leukemia , myeloid , phorbol , hox gene , macrophage , leukemia , gene expression , microbiology and biotechnology , gene , cancer research , cell culture , cell cycle , genetics , signal transduction , in vitro , protein kinase c
The translocation t(9;11)(p22;q23) generates the MLL-AF9 oncogene and is commonly associated with monocytic acute myeloid leukemia (AML-M5; FAB-classification). For the oncogenicity of MLL-AF9, the (over)expression of several other genes, including selected HOXA cluster genes as well as MEIS1 (a HOX cofactor), is required. We previously showed that the down-regulation of MLL-AF9 expression is not obligatory for monocyte-macrophage maturation in AML-M5 cells carrying t(9;11)(p22;q23). In this study, we analyzed the expression patterns of HOXA4, 5, 6, 7, 9, 10 and 11 (defined as 'HOXA-code' genes) and MEIS1 by semiquantitative RT-PCR during the monocyte-macrophage differentiation induced by phorbol 12-myristate 13-acetate (PMA) in THP-1 cells carrying t(9;11)(p22;q23) and expressing MLL-AF9. The analyses were performed in THP-1 cells expressing MLL-AF9 even after PMA treatment. The results showed that all the analyzed genes were expressed in untreated THP-1 cells. After the induction of differentiation, we observed a down-regulation of HOXA4, 7, 10, 11 and MEIS1, an up-regulation of HOXA6, and no significant variation in the expression of HOXA5 and 9. These data indicate that the expression of most HOXA-code genes, as well as MEIS1, could be implicated in the differentiation blockage observed in MLL-AF9-related leukemias.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom