
Long non‑coding RNA SNHG20 promotes cell proliferation, migration and invasion in retinoblastoma via the miR‑335‑5p/E2F3 axis
Author(s) -
Jing Song,
Ziping Zhang
Publication year - 2021
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2021.12182
Subject(s) - biology , cell growth , carcinogenesis , long non coding rna , gene silencing , rna interference , cell cycle , microrna , cancer research , oncogene , cell , transcription factor , rna , microbiology and biotechnology , cancer , genetics , gene
Current therapies for retinoblastoma (RB) are unsatisfactory and there is an urgent need for the development of new treatment modalities. Small nucleolar RNA host gene 20 (SNHG20) has been reported to serve a key oncogenic role in the development of various types of cancer, but its role in RB tumorigenesis remains to be fully determined. The present study aimed to investigate the expression patterns and biological roles of SNHG20 in RB. The expression levels of SNHG20 were measured via reverse transcription‑quantitative PCR in RB tissues and cell lines. The impact of SNHG20 status on cell proliferation, survival, migration and invasion was determined using small interfering RNA and a range of established experimental assays. The SNHG20/microRNA (miR)‑335‑5p/E2F transcription factor 3 (E2F3) signaling axis was further investigated using a dual‑luciferase activity reporter system and an RNA pull‑down assay combined with bioinformatics analyses. SNHG20 expression was significantly increased in RB tissues and cell lines. Silencing of SNHG20 in RB cells was shown to inhibit cell proliferation, clonogenic survival, migration and invasion. Moreover, mechanistic investigations demonstrated that SNHG20 could enhance the expression of E2F3 by sponging of miR‑335‑5p. These data suggested that the long non‑coding RNA SNHG20 may promote cell proliferation, migration and invasion in RB via the miR‑335‑5p/E2F3 axis.