
A potential role for astaxanthin in the treatment of bone diseases (Review)
Author(s) -
Maria Valenti,
Massimiliano Perduca,
Maria Grazia Romanelli,
Monica Mottes,
Luca Dalle Carbonare
Publication year - 2020
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2020.11284
Subject(s) - astaxanthin , oxidative stress , microbiology and biotechnology , reactive oxygen species , homeostasis , antioxidant , biology , bone resorption , osteoblast , biochemistry , endocrinology , carotenoid , in vitro
Alterations in molecular signaling impair cellular functions and induce degenerative diseases. Among the factors affecting intracellular signaling pathways, oxidative stress serves an important role. Astaxanthin (3,3'‑dihydroxy‑β, β‑carotene-4,4'‑dione), a pigment found in aquatic organisms, belongs to the xanthophylls family. Astaxanthin exerts a strong antioxidant activity and is widely used in food, cosmetic and pharmaceutical industries. Oxidative stress damages bone homeostasis by producing reactive oxygen species and increasing the production of pro‑resorption cytokines, such as interleukin (IL)‑1, tumor necrosis factor‑α and IL‑6. Therefore, antioxidant molecules can counteract the negative effects of oxidative stress on bone. Accordingly, previous studies have demonstrated that supplementation of astaxanthin in bone contributes to the restoration of bone homeostasis. The present review summarizes the negative effects of oxidative stress in bone and explores the role of astaxanthin in counteracting skeletal injuries consequent to oxidative stress.