
Phosphoproteomic profiling of oxycodone‑treated spinal cord of rats with cancer‑induced bone pain
Author(s) -
Helen Deng,
Ling Xu,
Huadong Ni,
Yungong Wang,
HongBo Li,
Qing He,
Miao Xu,
Ming Yao
Publication year - 2019
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2019.10702
Subject(s) - bone pain , bone cancer , oncogene , spinal cord , medicine , cancer , biology , chemistry , bioinformatics , neuroscience , cell cycle
Treatment of cancer‑induced bone pain (CIBP) is challenging in clinical settings. Oxycodone (OXY) is used to treat CIBP; however, a lack of understanding of the mechanisms underlying CIBP limits the application of OXY. In the present study, all rats were randomly divided into three groups: The sham group, the CIBP group, and the OXY group. Then, a rat model of CIBP was established by inoculation of Walker 256 tumor cells from rat tibia. Phosphoproteomic profiling of the OXY‑treated spinal dorsal cords of rats with CIBP was performed, and 1,679 phosphorylated proteins were identified, of which 160 proteins were significantly different between the CIBP and sham groups, and 113 proteins were significantly different between the CIBP and OXY groups. Gene Ontology analysis revealed that these proteins mainly clustered as synaptic‑associated cellular components; among these, disks large homolog 3 expression was markedly increased in rats with CIBP and was reversed by OXY treatment. Subsequent domain analysis of the differential proteins revealed several significant synaptic‑associated domains. In conclusion, synaptic‑associated cellular components may be critical in OXY‑induced analgesia in rats with CIBP.